Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Efrén V. García-Báez, ${ }^{\text {a }}$
Beatriz A. López-Romero, ${ }^{\text {a }}$
Francisco J. Martínez-Martínez, ${ }^{\text {a }}$ Herbert Höpfl ${ }^{b}$ and Itzia I. Padilla-Martínez ${ }^{\text {a* }}$
${ }^{\text {a }}$ Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Avenida Acueducto s / n, Barrio La Laguna Ticomán, México DF 07340, Mexico, and
${ }^{\text {b }}$ Centro de Investigaciónes Químicas, Universidad Autónoma del estado de Morelos, Cuernava Morelos, Mexico
Correspondence e-mail:
ipadilla@acei.upibi.ipn.mx

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.031$
$w R$ factor $=0.081$
Data-to-parameter ratio $=8.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Dimethyl N, N^{\prime}-(1,2-phenylene)dicarbamate

The title compound, $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}$, crystallizes in the monoclinic non-centrosymmetric space group $P n$ with $Z=2$. The two methyl carbamate groups, $-\mathrm{N}(\mathrm{H})-\mathrm{C}(=\mathrm{O})-\mathrm{OCH}_{3}$, are twisted away from the aromatic ring mean plane, but form a semiflexible eight-membered cavity involving the atoms of the $\mathrm{MeO}-\mathrm{C}(=\mathrm{O})-\mathrm{N}(\mathrm{H})-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{N}(\mathrm{H})-\mathrm{C}(=\mathrm{O})-\mathrm{OMe}$ group. The NH groups act as hydrogen-bond donors and the $\mathrm{C}=\mathrm{O}$ groups as acceptors to form intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding with an $R_{2}^{1}(7)$ motif, generating extended ribbons along the b direction.

Comment

Continuing with our studies (Padilla-Martínez et al., 2003) of molecular cavities, the analysis of the title structure, (I), is reported. Selected bond distances and torsion angles are listed in Table 1 and the molecular structure is shown in Fig. 1. Both methyl carbamate $-\mathrm{N}(\mathrm{H})-\mathrm{C}(=\mathrm{O})-\mathrm{OCH}_{3}$ groups are almost planar, with $\mathrm{C} 10-\mathrm{O} 9-\mathrm{C} 8-\mathrm{N} 7$ and $\mathrm{C} 14-\mathrm{O} 13-$ $\mathrm{C} 12-\mathrm{N} 11$ torsion angles of $175.17(15)$ and $-179.04(16)^{\circ}$, respectively. The $\mathrm{N} 7-\mathrm{C} 1$ and $\mathrm{N} 11-\mathrm{C} 2$ bond lengths of 1.428 (2) and 1.410 (2) \AA are very close to the value for the $\mathrm{C}_{\text {aromatic }}-\mathrm{N} s p^{2}$ distance of 1.413 (3) \AA reported for acetanilide (Brown, 1966). The $\mathrm{N} 7-\mathrm{C} 8$ and $\mathrm{N} 11-\mathrm{C} 12$ bond lengths of 1.339 (2) and 1.363 (2) \AA are significantly different but this feature (the shorter bond length for $\mathrm{N} 7-\mathrm{C} 8$), in conjunction with the longer bond length for $\mathrm{O} 8-\mathrm{C} 8$ [1.224 (2) \AA], in contrast with $\mathrm{O} 12-\mathrm{C} 12$ [1.201 \AA], is probably the result of resonance effects caused by the carbonyl group containing atom O8 being involved in strong hydrogenbonding interactions. The two methyl carbamate groups are twisted away from the aromatic ring mean plane, with C8$\mathrm{N} 7-\mathrm{C} 1-\mathrm{C} 6$ and $\mathrm{C} 12-\mathrm{N} 11-\mathrm{C} 2-\mathrm{C} 3$ torsion angles of -57.2 (2) and $31.7(3)^{\circ}$, respectively. The two amide H atoms are antiperiplanar to the carbonyl group, as has been observed for monosubstituted amides (Brown, 1966), but pointing towards the centre of the semiflexible eight-membered cavity formed by atoms O9/C8/N7/C1/C2/N11/C12/O13, giving an O9. . O13 distance of 5.883 (2) \AA.

(I)

The title structure is quite different from that obtained for diethyl $N, N^{\prime}-1,2$-phenylenedioxamate (Martín et al., 2002), for

Received 19 July 2004 Accepted 30 July 2004 Online 7 August 2004

Figure 1
View of the molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

Figure 2
Partial packing diagram of the title compound, showing the hydrogenbonded ribbons (dashed lines) formed by the $R_{2}^{1}(7)$ motif along the b direction. [Symmetry code: (i) $x, 1+y, z$.]
which no cavity is formed, in spite of the close similarity to the title compound. In the crystal structure of (I), there are two intermolecular hydrogen-bonding interactions between the two amide H atoms and carbonyl atom O8, namely $\mathrm{N} 7-$ $\mathrm{H} 7 \cdots \mathrm{O} 8^{\mathrm{i}}\left[\mathrm{N} 7 \cdots \mathrm{O} 8^{\mathrm{i}}=2.819\right.$ (2) \AA and $\mathrm{N} 7-\mathrm{H} 7 \cdots \mathrm{O} 8^{\mathrm{i}}=155^{\circ}$; symmetry code: (i) $x, 1+y, z]$ and $\mathrm{N} 11-\mathrm{H} 11 \cdots \mathrm{O} 8^{\mathrm{i}}$ $\left[\mathrm{N} 11 \cdots \mathrm{O} 8^{\mathrm{i}}=2.976(2) \AA\right.$ and $\left.\mathrm{N} 11-\mathrm{H} 11 \cdots \mathrm{O}^{\mathrm{i}}=170^{\circ}\right]$, forming the seven-membered ring described by the graph-set descriptor $R_{2}^{1}(7)$ (Bernstein et al., 1995). Extended tapes are generated by the continuous repetition of this motif along the b direction (Fig. 2). Hydrogen-bonding geometries are listed in Table 2.

Experimental

The title compound was prepared from 1,2-phenylenediamine (5.0 g , 46.3 mmol) and methyl chloroformate ($7.2 \mathrm{ml}, 92.6 \mathrm{mmol}$) in tetrahydrofuran (THF), in the presence of triethylamine (12.9 ml , 92.6 mmol). After filtering, evaporation of THF, several washings with distilled water and drying, 9.0 g (87% yield) of (I) were obtained as a colourless solid (m.p. 420-421 K). IR (neat solid, cm^{-1}): 3310 (NH), 1679 (CO); ${ }^{1} \mathrm{H}$ NMR (300.08 MHz, DMSO- d_{6}, p.p.m.): 8.79 (s, $2 \mathrm{H}, \mathrm{NH}), 7.47-7.07\left(A A^{\prime}-B B^{\prime}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right), 3.65\left(s, 6 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (75.46 MHz , DMSO- d_{6}, p.p.m.): 154.6 (CO), $130.2\left(\mathrm{C}_{i}\right), 125.0\left(\mathrm{C}_{o}\right)$, $124.5\left(\mathrm{C}_{m}\right), 51.9\left(\mathrm{CH}_{3}\right)$. Crystals suitable for X-ray analysis were obtained after slow crystallization from ethanol.

Crystal data
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}$
$M_{r}=224.22$
Monoclinic, $P n$
$a=9.306$ (2) \AA
$b=4.840(1) \AA$
$c=11.843$ (2) A
$\beta=100.181$ (3) ${ }^{\circ}$
$V=525.00(19) \AA^{3}$
$Z=2$

$$
D_{x}=1.418 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 600
reflections
$\theta=20-25^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.52 \times 0.42 \times 0.36 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector
diffractometer
φ and ω scans
4221 measured reflections
1203 independent reflections
1168 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.081$
$S=1.10$
1203 reflections
145 parameters
H -atom parameters constrained
Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

O8-C8	$1.224(2)$	O13-C14	$1.439(2)$
O9-C8	$1.335(2)$	N7-C1	$1.428(2)$
O9-C10	$1.444(2)$	N7-C8	$1.339(2)$
O12-C12	$1.201(2)$	N11-C2	$1.410(2)$
O13-C12	$1.347(2)$	N11-C12	$1.362(2)$
O8-C8-O9	$123.68(17)$	O12-C12-N11	$127.11(18)$
O8-C8-N7	$125.65(17)$	O13-C12-N11	$108.27(16)$
O9-C8-N7	$110.67(16)$	O12-C12-O13	$124.59(17)$
C10-O9-C8-N7	$175.17(15)$	C8-N7-C1-C6	$-57.2(2)$
C14-O13-C12-N11	$-179.04(16)$	C12-N11-C2-C3	$31.7(3)$

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 7-\mathrm{H} 7 \cdots \mathrm{O}^{\mathrm{i}}$	0.86	2.02	$2.819(2)$	155
N11-H11 O^{i}	0.86	2.13	$2.976(2)$	170

[^0]
organic papers

All H atoms were included in calculated positions, with $\mathrm{C}-\mathrm{H}_{\text {aromatic }}=0.93 \AA, \mathrm{C}-\mathrm{H}_{\text {methyl }}=0.96 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$. They were included in the riding-model approximation, with $U_{\text {iso }}=1.2 U_{\text {eq }}$ $\left(1.5 U_{\text {eq }}\right.$ for methyl) of the carrier atom. In the absence of anomalous dispersion effects, 1088 Friedel pairs were merged.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXL97 and WinGX-2003 (Farrugia, 1999).

The authors gratefully acknowledge financial support from CGPI and CONACYT-México (grant 33438-E).

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Brown, C. J. (1966). Acta Cryst. 21, 442-445.
Bruker (2000). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Martín, S., Beitia, J., Ugalde, M., Vitoria, P. \& Cortes, R. (2002). Acta Cryst. E58, o913-o915.
Padilla-Martínez, I. I., Chaparro-Huerta, M., Martínez-Martínez, F. J., Höpfl, H. \& García-Báez, E. V. (2003). Acta Cryst. E59, o825-o827.

Sheldrick G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: Symmetry code: (i) $x, 1+y, z$.

